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Introduction. Let rrr(u, v) describe an arbitrarily surface Σ in 3-space. From the
2nd Fundamental Form one obtains the real symmetric 2 × 2 matrix

H(u, v) =
(

rrruu···NNN rrruv···NNN
rrrvu···NNN rrrvv···NNN

)

that encodes the local curvature structure of Σ. One has

det H = λ1λ2 < 0
{

locally at points P of negative curvature
everywhere on hyperbolic surfaces

At such points and only at such points is it possible to find pairs {aaa1, aaa2} of
real vectors that satisfy the condition

(aaa|H|aaa) = 0

Such vectors aaai are said to be “self-conjugate,” and to indicate “asymptotic
directions” at P. My objectives here will be (i) to describe the transformations
H(u, v) → H(x, y) induced by parameter adjustments {u, v} → {x, y}, and (ii)
to show that when {x, y} refers to an “asymptotic parameterization of Σ”1

H(x, y) =
(

rrrxx···NNN rrrxy···NNN
rrryx···NNN rrryy···NNN

)
has invariably the form

(
0 f
f 0

)

1 Isolated points and regions of negative curvature are of relatively little
interest, so I adopt here and henceforth a language that is strictly appropriate
only to cases in which Σ is—like the pseudosphere—hyperbolic; i.e., in which
the curvature is everywhere negative. “Asymptotic parameterizations” are
parameterizations with the property that the tangent vectors {rrrx(x, y), rrry(x, y)}
are, for all {x, y}, asymptotic. The equations x = constant and y = constant
then inscribe “asymptotic curves” {Cx,Cy} on Σ.
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Response of H to parameter transformations. We look by way of preparation
to the relatively simpler problem posed by the reparameterization of

G(u, v) =
(

rrru···rrru rrru···rrrv

rrrv···rrru rrrv···rrrv

)

which derives from the 1st Fundamental Form and encodes the local metric
structure of Σ. From

rrrx = rrruux + rrrvvx

rrry = rrruuy + rrrvvy

it follows by Mathematica -assisted quick calculation that
(

rrrx···rrrx rrrx···rrry

rrry···rrrx rrry···rrry

)
=

(
ux vx

uy vy

) (
rrru···rrru rrru···rrrv

rrrv···rrru rrrv···rrrv

) (
ux uy

vx vy

)

which is to say:
G(x, y) = J TG(u, v) J

∣∣∣
u→u(x,y),v→v(x,y)

(1.1)

where J is the transformation matrix of the non-singular transformation

{u, v} −→ {x, y} : det J = uxvy − uyvx $= 0

of which the determinant is the Jacobian. Note that (1) preserves symmetry,
but preserves trace/determinant/spectrum only when J is rotational: J T = J –1.

Look now to the reparameterization of H. From

rrrxx = (rrruuux + rrruvvx)ux + (rrrvuux + rrrvvvx)vx + rrruuxx + rrrvvxx

rrrxy = (rrruuuy + rrruvvy)ux + (rrrvuuy + rrrvvvy)vx + rrruuxy + rrrvvxy

rrryy = (rrruuuy + rrruvvy)uy + (rrrvuuy + rrrvvvy)vy + rrruuyy + rrrvvyy

we have
(

rrrxx rrrxy

rrrxy rrryy

)
= J T

(
rrruu rrruv

rrruv rrrvv

)
J + rrru

(
uxx uxy

uxy uyy

)
+ rrrv

(
vxx vxy

vxy vyy

)

The tangent vectors rrru and rrrv are orthogonal to the normal vector NNN , so the
second and third terms in the preceding equation vanish when dotted into NNN .
We are left with

(
rrrxx···NNN rrrxy···NNN
rrrxy···NNN rrryy···NNN

)
= J T

(
rrruu···NNN rrruv···NNN
rrruv···NNN rrrvv···NNN

)
J

or
H(x, y) = J TH(u, v) J

∣∣∣
u→u(x,y),v→v(x,y)

(1.2)

Equation (1.1) is no surprise; it states simply that the elements of the metric
matrix G transform as a covariant tensor of second rank. Equation (1.2)—which
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says that so also do the elements of the H-matrix—is, on the other hand, a bit
of a surprise, since it hinges on the fortuitous vanishing of terms that involve
the second derivatives of u(x, y) and v(x, y).2 From (1.1) and (1.2) follows the
coordinate-independence of the Gaussian curvature:

K = det H(x, y)
det G(x, y)

= det H(u, v)
det G(u, v)

Inverse problem: the matrices with respect to which a given pair of vectors are
asymptotic. It is in service of clarity that I approach the issue before us backwards.
Let

eee1 =
(

1
0

)
, eee2 =

(
0
1

)
, W =

(
p q
r s

)

Clearly, eee1 and eee2 are asymptotic to W 3

(eee1|W |eee1) = (eee2|W |eee2) = 0 if and only if p = s = 0

Restricting our attention henceforth of symmetric matrices, we have therefore
the trivial statements

(eee1|Q |eee1) = 0
(eee2|Q |eee2) = 0

: Q =
(

0 q
q 0

)
(2)

Now let
aaa =

(
a1

a2

)
, bbb =

(
b1

b2

)

be an arbitrary pair of linearly independent vectors (neither orthogonality nor
normalization assumed). From them, construct

C ≡ ‖|aaa), |bbb)‖ =
(

a1 b1

a2 b2

)
(3.1)

Immediately
C |eee1) = |aaa)
C |eee2) = |bbb)

(eee1|C T = (aaa|
(eee2|C T = (bbb |

and inversely
|eee1) = D |aaa)
|eee2) = D |bbb)

(eee1| = (aaa|D T

(eee2| = (bbb |D T

where

D = C –1 = 1
a1b2 − a2b1

(
b2 −b1

−a2 a1

)
≡

(
A1 A2

B1 B2

)
=

∥∥∥∥
(AAA |
(BBB |

∥∥∥∥ (3.2)

So (2) becomes
(aaa |M |aaa) = (bbb |M |bbb) = 0 (4.1)

2 It is the management of such terms that in other contexts motivates the
definition of the covariant derivative.

3 I adopt here and henceforth a variant of Dirac notation, writing xxx else |xxx)
to signify column vectors, xxx T else (xxx | to signify their row-vector transposes.
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with4

M ≡ D TQD = q
(a1b2 − a2b1)2

(
−2a2b2 a1b2 + a2b2

a1b2 + a2b2 −2a1b1

)
(4.2)

The essential structure of this result is revealed if one assumes (without
loss of generality) that the asymptotic vectors are unit vectors, which can be
accomplished by writing

|aaa) =
(

cosα
sin α

)
|bbb) =

(
cosβ
sin β

)
(5)

This reduces the number of adjustable parameters from five to three (α, β, q)
and brings (4.2) to the form

M = q

sin2(α− β)

(
−2 sinα sinβ sin(α + β)
sin(α + β) −2 cosα cosβ

)
(6.1)

giving

det M = − q2

sin2(α− β)
< 0 (6.2)

trM = −2q
cos(α− β)
sin2(α− β)

(6.3)

λ± = 1
2

[
trM ±

√
(trM)2 − 4 det M

]
= −q

cos(α− β) ± 1
sin2(α− β)

(6.4)

Direct problem: from the vectors asymptotic to a given matrix to the asymptotic
representation of that matrix. One has in principle only to trace in reverse the
procedure described in the preceding section:

step one Check that det M < 0. Construct arbitrarily normalized solutions
|aaa) and |bbb) of (xxx |M |xxx) = 0.

step two Construct

C = ‖|aaa) |bbb)‖ and D = C –1 =
∥∥∥∥

(AAA|
(BBB|

∥∥∥∥

Notice, by the way, that the aaa-basis (with elements {|aaa), |bbb)}) and the AAA -basis
(with elements {|AAA), |BBB )}) are “dual” (the pair are “biorthogonal”) in the sense
that (AAAi|aaaj) = δi

j .5

One is placed thus in position to write

(aaa|M |aaa) = (aaa|D T·C TMC·D|aaa)
= (eee1|Q |eee1)

(bbb |M |bbb) = (bbb |D T·C TMC·D|bbb)
= (eee2|Q |eee2)

4 Accuracy check: ask Mathematica to solve (xxx |M |xxx) = 0 with (xxx |= (x1, x2),
get x1 = a1x2/a2, x1 = b1x2/b2; i.e., xxx ∼ aaa else xxx ∼ bbb.

5 See “Biorthogonality–revisited” (June, 2016).
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where Q—the asymptotic representation of M—has invariably the form

Q =
(

0 q
q 0

)
with q2 = −(det C)2 det M (7)

= −(a1b2 − a2b1)2 det M > 0

Numerical experimentation confirms the swift effectiveness of the procedure.

Again, the procedure is illuminated if one imposes the assumption (5) that
the asymptotic vectors |aaa) and |bbb) are unit vectors. Writing

M =
(

p q
q s

)
, |xxx) =

(
cosψ
sin ψ

)

one from (xxx |M |xxx) = 0 obtains

tanψ =
−q ±

√
q2 − ps

s
: real by q2 − rs = −det M > 0

giving

α = arctan
[
−q +

√
q2 − ps

s

]

β = arctan
[
−q −

√
q2 − ps

s

] (8)

From
C =

(
cosα cosβ
sin α sin β

)

we obtain
D = C –1 = 1

sin(α− β)

(
− sinβ cosβ

sin α − cosα

)

and
Q = C TMC =

(
Q1 q
q Q2

)

with6

Q1 = p cos2 α + s sin2 α + q sin 2α = 0
Q2 = p cos2 β + s sin2 β + q sin 2β = 0
q = cosα(p cosβ + q sinβ) + sinα(q cosβ + s sinβ)

= −2 q2 − ps√
(p − s)2 + 4q2

< 0 (9.1)

We know from the symmetry of M that its eigenvalues are real, and from
det M = λ1λ2 < 0 we know that they are of opposite signs. From (9) and

λ± = 1
2

[
(p + s) ±

√
(p − s)2 + 4q2

]

6 Use (8), TrigToExp and Simplify.
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We therefore have (writing {λ1, λ2} for {λ+, λ−})

q = 2 λ1λ2

λ1 − λ2
(9.2)

In normalized asymptotic coordinates (5) the metric matrix becomes

G =
(

aaa···aaa aaa···bbb
bbb···aaa bbb···bbb

)
=

(
1 cosω

cosω 1

)
(10.1)

where
ω = aaa ∠ bbb = α− β

One has the identity

cos[arctan x − arctan y] = 1 + xy√
(1 + x2)(1 + y2)

so by (8)
cosω = p + s√

(p − s)2 + 4q2
= λ1 + λ2

λ1 − λ2
(10.2)

Illustrative application to differential geometry: the unit pseudosphere. We
look now to the simplest instance of a hyperbolic surface—the pseudosphere,
on which negative curvature is in fact constant : K = −1 Working from the
Beltrami parameterization (1868)

rrr(u, v) =




sechu cos v
sechu sin v
u − tanhu



 (11)

we find7

M = ‖hij(u, v)‖ =
(
−sechu tanhu 0

0 sechu tanhu

)

and from
(duuu |M |duuu) = 0 with |duuu) =

(
du
dv

)

we have du2 − dv2 = (du + dv)(du− dv) = 0 so are led to introduce asymptotic
variables

x = 1
2 (u + v)

y = 1
2 (u − v)

: the factors 1
2 are cosmetic conveniences

whence
u = x + y

v = x − y
(12)

7 See “Alternative formulations of the consistency argument that leads from
pseudosphere to the sine-Gordon equation,” (April, 2016), pages 3–4.
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In these variables (11) becomes

rrr(x, y) =




sech(x + y) cos(x − y)
sech(x + y) sin(x − y)
(x + y) − tanh(x + y)



 (13)

and tedious direct calculation gives

‖hij(x, y)‖ =
(

0 −2sech(x + y)tanh(x + y)
−2sech(x + y)tanh(x + y) 0

)

We are, however, in position now to avoid such tedium: by (12)8

J =
(

ux uy

vx vy

)
=

(
1 1
1 −1

)

and we recover the preceding result as an immediate instance of (1.2):

‖hij(x, y)‖ = J T‖hij(u, y)‖ J
∣∣∣
u→u(x,y),v→v(x,y)

(14.1)

In the linear algebraic language of page 4 we have

|aaa) =
(

1
1

)
, |bbb) =

(
1
−1

)
, C = ‖|aaa) |bbb)‖ = J

in which notation (14.1) reads

Q = C TMC
∣∣∣
u→x+y,v→x−y

(14.2)

Computational efficiency, as demonstrated above, is, however, secondary
fruit of the preceding discussion; my primary objective has been to establish
that the asymptotic representations of negative-definite symmetric matrices M
have invariably the distinctive structure of Q (symmetric, with zeros on the
diagonal); in the language of differential geometry

H(u, v) −−−−−−−−−−−−−−−−−−−−−−→
asymptotic reparameterization

H(x, y) =
(

0 f
f 0

)

Working from (11), one has the metric matrix

G(u, v) = ‖gij(u, v)‖ =
(

rrru···rrru rrru···rrrv

rrrv···rrru rrrv···rrrv

)
=

(
tanh2u 0

0 sech2u

)

8 Notice that J, though not rotational, satisfies J TJ = 2I, so is proportional
to a rotation matrix. Rescaled asymptotic parameters remain asymptotic.
Suitable rescaling would in the present instance send J → J̃ = 1√

2
J, which

is rotational, so would preserve not only symmetry but also trace, determinant
and spectrum.
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which in asymptotic parameters (work from (13) or—more efficiently—use (1.1))
becomes (compare (10))

G(x, y) = ‖gij(x, y)‖ =
(

1 cosω
cosω 1

)

with
ω(x, y) = arccos

[
tanh2(x + y) − sech2(x + y)

]

= arccos
[
1 − 2sech2(x + y)

]

= arccos
[
1 − 4

1 + cosh(2x + 2y)

]

This unpromising result acquired historic significance from the circumstance
that, as we are informed by Mathematica and as Edmond Bour was the first to
notice (1862), we have on one hand

ωxy(x, y) = 2 sech(x + y)tanh(x + y)

and on the other hand

sinω = 2 sech(x + y)tanh(x + y)

Thus did the sine-gordon equation

∂x∂yω = sinω

enter the literature of mathematics, fully half a century before it became central
to the physical theory of solitons, the phenomenological basis of which can be
traced to an event observed and remarked upon (1834) by John Scott Russell
nearly thirty years before Bour’ mathematical remark.

Pseudospheric surfaces exist in infinite variety. In a previous essay9 I
provide brief discussion of a class of surfaces attributed to Alfred Enneper
(1830–1885):

rrr =




0
0
u



 + 2d
c

sin(dv)cosh(cu)
d2cosh2(cu) + c2 sin2(dv)




sin v

− cos v
0





+ 2d2

c
cosh(cu)

d2cosh2(cu) + c2 sin2(dv)




cos v cos(dv)
sin v cos(dv)
−sinh(cu)





where c =
√

1 − d2 and d is any proper fraction contained within the unit
interval: 0 < d ≡ p/q < 1. There I report calculations (details too intricate to
transcribe, so allowed to remain in Mathematica’s memory) that establish

G(u, v; d) = ‖gij(u, v; d)‖ =
(

E 0
0 G

)
: positive definite

H(u, v; d) = ‖hij(u, v; d)‖ =
(

e 0
0 g

)
: negative definite, traceless

9 “Origin of the sine-Gordon equation,” (April, 2016).



Illustrative application to differential geometry: the unit pseudosphere 9

and, moreover, that in every instance

K = det H(u, v; d)
det G(u, v; d)

= −1

The Enneper surfaces comprise, therefore, an infinite set of pseudospheres (one
for every d). One expects the simplicity of H(u, v; d) to make it relatively
easy to develop the details of the transformation {u, v} → {x, y} to asymptotic
coordinates, therefore to construct J, therefore—by the methods illustrated
above—to produce G(x, y ; d) and H(x, y ; d) without heavy ab initio calculation.
Graphic representations of Enneper surfaces are, by the way, marvelously
intricate, glorious to behold. Such surfaces are of interest to Rogers & Schief10
because they give rise to stationary multi-soliton “breather” solutions of the
sine-Gordon equation.

Remark concerning the origin of this essay. Given the arbitrarily parameterized
description rrr(u, v) of a surface Σ, the 2nd Fundamental Form leads to a matrix

H(u, v) =
(

e(u, v) f(u, v)
f(u, v) g(u, v)

)

The sign of det H(u, v) determines whether the Gaussian curvature is positive
or negative at the point {u, v}. At points of negative curvature real-valued
self-conjugate tangent vectors (solutions of (xxx|H|xxx) = 0) exist, and occur in
pairs. Asymptotic parameterizations rrr(x, y) of hyperbolic surfaces are defined
by the condition that the tangent vectors {rrrx(x, y), rrry(x, y)} are self-conjugate
(or “asymptotic”) at all points {x, y}, and serve to inscribe asymptotic curves
{Cx,Cy} on Σ.

Rogers and Schief11 begin their discussion of Tzitzeica surfaces with the
unsupported remark that “in such cases [meaning what?]

H(x, y) takes the form
(

0 f(x, y)
f(x, y) 0

)
”

My problem has been to understand the significance of that remark. Does it
pertain to a specific class of cases—if so, which?—or does it refer (as was my
hunch, and as emerged) to a general property of the asymptotic
parameterizations? Noting that {rrru(u, v), rrrv(u, v)} and {rrrx(x, y), rrry(x, y)}
provide bases on the tangent plane that are typically non-orthogonal, I look
in a preparatory essay5 to the use of non-orthogonal bases to construct matrix
representations of linear operators and to the relationship between such
representations, first in Vn, then in V2 (the case of interest). That discussion did
expose an interesting “generalized spectral decomposition theorem,” but proved

10 Bäcklund and Darboux Transformations: Geometry & Modern Applications
in Soliton Theory (2002), §1.4.4, pages 38–41.

11 Ibid., page 89.
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to be fundamentally misdirected. For such transformations turn out to be of
the form

M → M̃ = S MS –1

which (except when S –1 = kS T) do not preserve symmetry, but do preserve
trace/determinant/spectrum, and in all those respects are inconsistent with
the basic facts of the matter at hand: H(u, v) and H(x, y) are invariably both
symmetric, and their traces—at least in the cases contemplated by Rogers and
Schief—are distinct.

I was brought thus to the belated realization that it is a mistake to conflate
basis transformations and transformations of the parameters that support the
constructions of H(u, v) and H(x, y). I look to transformations of the latter
type in a second preparatory essay12 and am led (as at (1.2) above) to a result
of the form

M → M̃ = J TM J

which does preserve symmetry and does not preserve trace. I show there that
in the specific cases of the hexenhut and pseudosphere (both of which are
hyperbolic) one does indeed find that

H(x, y) has the form
(

0 f
f 0

)
: {x, y} asymptotic

Building upon that foundation, I show in the present essay that the preceding
statement pertains to all hyperbolic surfaces.

I have retained those preparatory essays because both provide supplemental
material of some independent interest.

12 “Parameter transformations vs. basis transformations,” (June, 2016).


